
Great uncertainty surrounds dark energy, both in terms of its physics, and the choice of methods by which the problem should be addressed. Here we quantify the redshift sensitivities offered by different techniques. We focus on the three methods most adept at constraining w, namely supernovae, cosmic shear, and baryon oscillations. For each we provide insight into the family of w(z) models which are permitted for a particular constraint on either w=w0 or w=w0+wa(1-a). Our results are in the form of "weight functions", which describe the fitted model parameters as a weighted average over the true functional form. For example, we find the recent best-fit from the Supernovae Legacy Survey (w=-1.023) corresponds to the average value of w(z) over the range 0
11 pages, 10 figures, changes reflect published version
Distances, Observational cosmology, redshifts, Dark energy, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics, radial velocities, spatial distribution of galaxies, Cosmology
Distances, Observational cosmology, redshifts, Dark energy, Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics, radial velocities, spatial distribution of galaxies, Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 31 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
