<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 11383/1746092 , 11585/4918
We study the role that tachyon fields may play in cosmology as compared to the well-established use of minimally coupled scalar fields. We first elaborate on a kind of correspondence existing between tachyons and minimally coupled scalar fields; corresponding theories give rise to the same cosmological evolution for a particular choice of the initial conditions but not for any other. This leads us to study a specific one-parameter family of tachyonic models based on a perfect fluid mixed with a positive cosmological constant. For positive values of the parameter one needs to modify Sen's action and use the sigma process of resolution of singularities. The physics described by this model is dramatically different and much richer than that of the corresponding scalar field. For particular choices of the initial conditions the universe, that does mimick for a long time a de Sitter-like expansion, ends up in a finite time in a special type of singularity that we call a "big brake". This singularity is characterized by an infinite deceleration.
7 figures. Enlarged discussion of the big brake cosmology. Continuation of the model clarified. References added
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Astrophysics (astro-ph), FOS: Physical sciences, TACHYONS; SCALAR FIELDS; DARK ENERGY; COSMIC ACCELERATION, Astrophysics
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), Astrophysics (astro-ph), FOS: Physical sciences, TACHYONS; SCALAR FIELDS; DARK ENERGY; COSMIC ACCELERATION, Astrophysics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 263 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |