
We study a class of N=1 Supergravity inflationary models in which the evolution of the inflaton dynamics is controlled by a single power in the inflaton field at the point where the observed density fluctuations are produced, in the context of the braneworld scenario, in light of WMAP results. In particular, we find that the bounds on the spectral index and its running constrain the parameter space both for models where the inflationary potential is dominated by a quadratic term and by a cubic term in the inflaton field. We also find that $��_s>0$ is required for the quadratic model whereas $��_s<0 $ for the cubic model. Moreover, we have determined an upper bound on the five-dimensional Planck scale, $M_5 \lsim 0.019$ M, for the quadratic model. On the other hand, a running spectral index with $n_s>1$ on large scales and $n_s<1$ on small scales is not possible in either case.
7 pages, 4 eps figures, references corrected, version to appear in Phys. Rev. D
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
Astrophysics (astro-ph), FOS: Physical sciences, Astrophysics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
