
We consider quantum theoretical effects of the sudden change of the boundary conditions which mimics the occurrence of naked singularities. For a simple demonstration, we study a massless scalar field in $(1 + 1)$-dimensional Minkowski spacetime with finite spatial interval. We calculate the vacuum expectation value of the energy-momentum tensor and explicitly show that singular wave or {\em thunderbolt} appears along the Cauchy horizon. The thunderbolt possibly destroys the Cauchy horizon if its backreaction on the geometry is taken into account, leading to quantum restoration of the global hyperbolicity. The result of the present work may also apply to the situation that a closed string freely oscillating is traveling to a brane and changes itself to an open string pinned-down by the ends satisfying the Dirichlet boundary conditions on the brane.
12 pages, 1 figure, references added, to appear in Phys. Rev. D
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
