
Standard Model neutrinos are not usually considered plausible dark matter candidates because the usual treatment of their decoupling in the early universe implies that their mass must be sufficiently small to make them ``hot'' dark matter. In this paper we show that decoupling of Standard Model neutrinos in low reheat models may result in neutrino densities very much less than usually assumed, and thus their mass may be in the keV range. Standard Model neutrinos may therefore be warm dark matter candidates.
5 pages, 5 figures, LaTeX file uses revtex package
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
