Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ Physical Review Darrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
Physical Review D
Article
Data sources: UnpayWall
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review D
Article . 2000 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2000
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Cosmological dynamics on the brane

Authors: Maartens, R;

Cosmological dynamics on the brane

Abstract

In Randall-Sundrum-type brane-world cosmologies, the dynamical equations on the three-brane differ from the general relativity equations by terms that carry the effects of imbedding and of the free gravitational field in the five-dimensional bulk. We derive the covariant nonlinear dynamical equations for the gravitational and matter fields on the brane, and then linearize to find the perturbation equations on the brane. The local energy-momentum corrections are significant only at very high energies. The imprint on the brane of the nonlocal gravitational field in the bulk is more subtle, and we provide a careful decomposition of this effect into nonlocal energy density, flux and anisotropic stress. The nonlocal energy density determines the tidal acceleration in the off-brane direction, and can oppose singularity formation via the generalized Raychaudhuri equation. Unlike the nonlocal energy density and flux, the nonlocal anisotropic stress is not determined by an evolution equation on the brane. In particular, isotropy of the cosmic microwave background may no longer guarantee a Friedmann geometry. Adiabatic density perturbations are coupled to perturbations in the nonlocal bulk field, and in general the system is not closed on the brane. But on super-Hubble scales, density perturbations can be evaluated by brane observers. Tensor perturbations on the brane are suppressed by local bulk effects during inflation, while the nonlocal effects can serve as a source or a sink. Vorticity on the brane decays as in general relativity, but nonlocal bulk effects can source the gravito-magnetic field, so that vector perturbations can be generated in the absence of vorticity.

Small changes, highlighting main result (superhorizon density perturbations can be evaluated intrinsically by brane observers). Matches version to appear in Phys. Rev. D

Related Organizations
Keywords

High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), 539, Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    334
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 0.1%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
334
Top 10%
Top 1%
Top 0.1%
Green
bronze