
Two families of models of rotating relativistic disks based on Taub-NUT and Kerr metrics are constructed using the well-known "displace, cut and reflect" method. We find that for disks built from a generic stationary axially symmetric metric the "sound velocity", $(pressure/density)^{1/2}$, is equal to the geometric mean of the prograde and retrograde geodesic circular velocities of test particles moving on the disk. We also found that for generic disks we can have zones with heat flow. For the two families of models studied the boundaries that separate the zones with and without heat flow are not stable against radial perturbations (ring formation).
18 eps figures, to be published PRD
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 40 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
