<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We show that there is a sector of quantum general relativity which may be expressed in a completely holographic formulation in terms of states and operators defined on a finite boundary. The space of boundary states is built out of the conformal blocks of SU(2)_L + SU(2)_R, WZW field theory on the n-punctured sphere, where n is related to the area of the boundary. The Bekenstein bound is explicitly satisfied. These results are based on a new lagrangian and hamiltonian formulation of general relativity based on a constrained Sp(4) topological field theory. The hamiltonian formalism is polynomial, and also left-right symmetric. The quantization uses balanced SU(2)_L + SU(2)_R spin networks and so justifies the state sum model of Barrett and Crane. By extending the formalism to Osp(4/N) a holographic formulation of extended supergravity is obtained, as will be described in detail in a subsequent paper.
The Lorentzian boundary conditions have been extended to a much more general class, more details given of quantization in the Lorentzian case
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 50 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |