
A large-scale cosmic magnetic field affects not only the growth of density perturbations, but also rotational instabilities and anisotropic deformation in the density distribution. We give a fully relativistic treatment of all these effects, incorporating the magneto-curvature coupling that arises in a relativistic approach. We show that this coupling produces a small enhancement of the growing mode on superhorizon scales. The magnetic field generates new nonadiabatic constant and decaying modes, as well as nonadiabatic corrections to the standard growing and decaying modes. Magnetized isocurvature perturbations are purely decaying on superhorizon scales. On subhorizon scales before recombination, magnetized density perturbations propagate as magneto-sonic waves, leading to a small decrease in the spacing of acoustic peaks. Fluctuations in the field direction induce scale-dependent vorticity, and generate precession in the rotational vector. On small scales, magnetized density vortices propagate as Alfv��n waves during the radiation era. After recombination, they decay slower than non-magnetized vortices. Magnetic fluctuations are also an active source of anisotropic distortion in the density distribution. We derive the evolution equations for this distortion, and find a particular growing solution.
Revised version, typos corrected, to appear in Phys. Rev. D
Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology, 532
Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology, 532
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 90 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
