
We compute Teitelboim's causal propagator in the context of canonical loop quantum gravity. For the Lorentzian signature, we find that the resultant power series can be expressed as a sum over branched, colored two-surfaces with an intrinsic causal structure. This leads us to define a general structure which we call a ``causal spin foam''. We also demonstrate that the causal evolution models for spin networks fall in the general class of causal spin foams.
19 pages, LaTeX2e, many eps figures
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 6 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
