<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We propose a new eta-eta' mixing scheme where we start from the quark flavor basis and assume that the decay constants in that basis follow the pattern of particle state mixing. On exploiting the divergences of the axial vector currents - which embody the axial vector anomaly - all basic parameters are fixed to first order of flavor symmetry breaking. That approach naturally leads to a mass matrix, quadratic in the masses, with specified elements. We also test our mixing scheme against experiment and determine corrections to the first order values of the basic parameters from phenomenology. Finally, we generalize the mixing scheme to include the eta(c). Again the divergences of the axial vector currents fix the mass matrix and, hence, mixing angles and the charm content of the eta and eta'.
14 pages, uses feynmp.sty
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences, High Energy Physics - Experiment
Nuclear Theory (nucl-th), High Energy Physics - Phenomenology, High Energy Physics - Experiment (hep-ex), High Energy Physics - Phenomenology (hep-ph), Nuclear Theory, FOS: Physical sciences, High Energy Physics - Experiment
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 556 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |