
We employ the influence functional technique to trace out the photonic contribution from full quantum electrodynamics. The reduced density matrix propagator for the spinor field is then constructed. We discuss the role of time-dependent renormalization in the propagator and focus on the possibility of obtaining dynamically induced superselection rules. Finally, we derive the master equation for the case of the field being in an one-particle state in a non-relativistic regime and discuss whether EM vacuumm fluctuations are sufficient to produce decoherence in the position basis.
28 pages, 2 figures. Substantially revised, one important mistake corrected; discussion on decoherence upgraded, section 4 essentially rewritten
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Quantum Physics (quant-ph)
High Energy Physics - Theory, Quantum Physics, High Energy Physics - Theory (hep-th), FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
