
In this work a relation between topology and thermodynamical features of gravitational instantons is shown. The expression for the Euler characteristic, through the Gauss-Bonnet integral, and the one for the entropy of gravitational instantons are proposed in a form that makes the relation between them self-evident. A new formulation of the Bekenstein-Hawking formula, where the entropy and the Euler characteristic are related by $S=��A/8$, is obtained. This formula provides the correct results for a wide class of gravitational instantons described by both spherically and axially symmetric metrics.
25 pages, RevTeX, accepted for publication in Phys. Rev. D
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 47 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
