Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 1995 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 1995
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

Gravity and global symmetries

Authors: Kallosh, Renata; Linde, Andrei; Linde, Dmitri; Susskind, Leonard;

Gravity and global symmetries

Abstract

There exists a widely spread notion that gravitational effects can strongly violate global symmetries. It may lead to many important consequences. We will argue, in particular, that nonperturbative gravitational effects in the axion theory lead to a strong violation of CP invariance unless they are suppressed by an extremely small factor 10^{-82}. One could hope that this problem disappears if one represents the global symmetry of a pseudoscalar axion field as a gauge symmetry of the Ogievetsky-Polubarinov-Kalb-Ramond antisymmetric tensor field. We will show, however, that this gauge symmetry does not protect the axion mass from quantum corrections. The amplitude of gravitational effects violating global symmetries could be strongly suppressed by e^{-S}, where S is the action of a wormhole which may eat the global charge. Unfortunately, in a wide variety of theories based on the Einstein theory of gravity the action appears to be fairly small, S = O(10). However, we have found that the existence of wormholes and the value of their action are extremely sensitive to the structure of space on the nearly Planckian scale. We consider several examples (Kaluza-Klein theory, conformal anomaly, R^2 terms) which show that modifications of the Einstein theory on the length scale l ~ 10 M_P^{-1} may strongly suppress violation of global symmetries. We have found also that in string theory there exists an additional suppression of topology change by the factor e^{-{8��^2\over g^2}}. This effect is strong enough to save the axion theory for the natural values of the stringy gauge coupling constant.

56 pages, a reference to the pioneering paper of Ogievetsky and Polubarinov on the antisymmetric tensor field is added

Keywords

High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    346
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
346
Top 1%
Top 1%
Top 10%
Green