
pmid: 10019284
arXiv: astro-ph/9409041
We examine the possibility that an epoch of inflationary expansion induces high-frequency oscillations of Newton's constant, $G$. The effect occurs because inflation can shift the expectation value of a non-minimally coupled, Brans-Dicke-like field away from the minimum of its effective potential. At some time after inflation ends, the field begins to oscillate, resulting in periodic variations in $G$. We find conditions for which the oscillation energy would be sufficient to close the universe, consistent with all known constraints from cosmology and local tests of general relativity.
30 pages, Penn Preprint UPR-0628T, Wash. U. Preprint WUGRAV 94-10 Four figures available by ftp (read comment at head of file)
Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology
Astrophysics (astro-ph), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics, General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
