
Diffractive deep inelastic events with a large rapidity gap are analyzed by using a Regge model for the pomeron flux and a gluonic content for the pomeron. Contrary to the expectations, the simplest assumption for the pomeron trajectory gives the best agreement with the data on the ratio of diffractive to the total number of events. In this case the main properties of the model are described by an analytic expression.
18 pages (postcript file)
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
