
A renormalizable theory of quantum gravity coupled to a dilaton and conformal matter in two space-time dimensions is analyzed. The theory is shown to be exactly solvable classically. Included among the exact classical solutions are configurations describing the formation of a black hole by collapsing matter. The problem of Hawking radiation and backreaction of the metric is analyzed to leading order in a $1/N$ expansion, where $N$ is the number of matter fields. The results suggest that the collapsing matter radiates away all of its energy before an event horizon has a chance to form, and black holes thereby disappear from the quantum mechanical spectrum. It is argued that the matter asymptotically approaches a zero-energy ``bound state'' which can carry global quantum numbers and that a unitary $S$-matrix including such states should exist.
14 pages
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 816 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 0.1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 0.1% |
