<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
pmid: 10012969
A second-quantized analysis is performed to examine many-body phenomena in closed bosonic strings. The covariant nonpolynomial closed-string field theory is developed in terms of particle fields and shown to contain interactions triggering a nonperturbative condensation of the tachyon field. We study the possibility that the higher-dimensional Lorentz symmetry spontaneously breaks. We show that the theory has asymptotic freedom due to a tree-level running coupling. The spectrum of states in the nonperturbative ground state is radically changed relative to the free case; in particular, there is no massless graviton. Similar effects are anticipated in any nonperturbative vacuum.
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 46 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |