Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 1977 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
versions View all 1 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Origin of internal symmetry

Authors: R. Arnowitt; Pran Nath;

Origin of internal symmetry

Abstract

The possibility that the internal-symmetry group is a consequence of the gauge invariance of a theory (rather than being phenomenologically chosen) is suggested. For a fully unified theory where all interactions are determined by the gauge invariance, this could come about as a consequence of spontaneous (or dynamical) breakdown. Thus the vacuum state after symmetry breakdown may preserve only a subgroup of a larger arbitrary group of the original unbroken equations. The above suggestion appears to be at least partly realized within the framework of gauge supersymmetry where the local gauge invariance determines all interactions via the field equations R/sub A B/ = lambdag/sub A B/, lambda = const. Starting with an arbitrary internal-symmetry group, we obtain general conditions to determine the remaining unbroken symmetry group when the gauge supersymmetry spontaneously breaks to a vacuum state that is invariant under a generalized global supersymmetry. For the case lambda not-equal 0, if one further assumes that the vacuum state preserves parity, these conditions uniquely determine the remaining unbroken internal-symmetry group to be the U(1) gauge group of Maxwell theory (as well as the Einstein general coordinate group). For the case lambda = 0, the internal-symmetry group is only partly determined. However,more » the condition that a spontaneous breakdown occurs automatically causes a violation of parity, and thus affords a natural origin of this phenomenon for weak interactions. The structure of the pseudo-Goldstone bosons of the theory (which are absorbed by the vector mesons of the broken gauge invariances) is determined.« less

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    11
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
11
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!