<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We explore the physics of relativistic gapless phases defined by a mixed anomaly between two generalized conserved currents. The gapless modes can be understood as Goldstone modes arising from the nonlinear realization of (generically higher-form) symmetries arising from these currents. In some cases, the anomaly cannot be reproduced by any local and unitary theory, indicating that the corresponding symmetries are impossible, in the sense that they cannot appear in a Lorentzian physical system. We give a general construction and illustrate it with several examples. Most notably, we study conformal gravity from this perspective, describing the higher-form symmetries of the linear theory and showing how it can be understood in terms of anomalies. Along the way we clarify some aspects of electric-magnetic duality in linear conformal gravity. Published by the American Physical Society 2024
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences, 530
High Energy Physics - Theory, High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences, 530
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 1 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |