
arXiv: 2308.01615
It was shown in previous work that when a gravitational wave (GW) passes through a viscous shell of matter the magnitude of the GW will be damped and there are astrohysical circumstances in which the damping is almost complete. The energy transfer from the GWs to the fluid will increase its temperature. We construct a model for this process and obtain an expression for the temperature distribution inside the shell in terms of spherical harmonics. Further, it is shown that this effect is astrophysically significant: a model problem is constructed for which the temperature increase is of order $10^6{}^\circ$K.
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
