
arXiv: 2305.08683
We study two (massless free field) models, a photon/photino model with a vector gauge field and a Majorana spinor field, and a Wess-Zumino model. They each exhibit Lorentz symmetry violation but retain, in an appropriate way, the supersymmetry correspondance between the particles of the two fields. In relation to the photon field the Lorentz symmetry violation is of a simple but non-trivial kind that implies birefringence. In relation to the spinor field the Lorentz violation is produced by a modification of the Majorana equation that is a simplified version of more general investigations of Lorentz symmetry violation of the Dirac equation. In the case of the Wess-Zumino model we retain the same violation of Lorentz symmetry for the Majorana field and adjust the propagation of the scalar particles so that they exhibit a corresponding birefringence. The advantages of the models are that they are straightforward to investigate completely and both retain the basic aspect of supersymmetry namely the one-to-one correspondance between bosons and fermions. As a result of this bottom-up approach it is then possible to construct conserved supersymmetry charges and investigate their algebraic properties. To some extent these are similar to those encountered in the case of Lorentz invariance. However there are differences and in particular non-local terms appear in the commutation relations of the supersymmetry charges and fields of the models. We examine carefully the rather intricate nature of the limit back to Lorentz invariance.
30 pages, further references
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 0 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
