Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1103/physre...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2023
License: CC 0
Data sources: Datacite
versions View all 5 versions
addClaim

Supersymmetry with Lorentz symmetry violation

Authors: I. T. Drummond;

Supersymmetry with Lorentz symmetry violation

Abstract

We study two (massless free field) models, a photon/photino model with a vector gauge field and a Majorana spinor field, and a Wess-Zumino model. They each exhibit Lorentz symmetry violation but retain, in an appropriate way, the supersymmetry correspondance between the particles of the two fields. In relation to the photon field the Lorentz symmetry violation is of a simple but non-trivial kind that implies birefringence. In relation to the spinor field the Lorentz violation is produced by a modification of the Majorana equation that is a simplified version of more general investigations of Lorentz symmetry violation of the Dirac equation. In the case of the Wess-Zumino model we retain the same violation of Lorentz symmetry for the Majorana field and adjust the propagation of the scalar particles so that they exhibit a corresponding birefringence. The advantages of the models are that they are straightforward to investigate completely and both retain the basic aspect of supersymmetry namely the one-to-one correspondance between bosons and fermions. As a result of this bottom-up approach it is then possible to construct conserved supersymmetry charges and investigate their algebraic properties. To some extent these are similar to those encountered in the case of Lorentz invariance. However there are differences and in particular non-local terms appear in the commutation relations of the supersymmetry charges and fields of the models. We examine carefully the rather intricate nature of the limit back to Lorentz invariance.

30 pages, further references

Related Organizations
Keywords

High Energy Physics - Theory, High Energy Physics - Theory (hep-th), FOS: Physical sciences

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    0
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
0
Average
Average
Average
Green
hybrid