
arXiv: 2212.01637
We develop the theory of quantum scars for quantum fields. By generalizing the formalisms of Heller and Bogomolny from few-body quantum mechanics to quantum fields, we find that unstable periodic classical solutions of the field equations imprint themselves in a precise manner on bands of energy eigenfunctions. This indicates a breakdown of thermalization at certain energy scales, in a manner that can be characterized via semiclassics. As an explicit example, we consider time-periodic non-topological solitons in complex scalar field theories. We find that an unstable variant of Q-balls, called Q-clouds, induce quantum scars. Some technical contributions of our work include methods for characterizing moduli spaces of periodic orbits in field theories, which are essential for formulating our quantum scar formula. We further discuss potential connections with quantum many-body scars in Rydberg atom arrays.
7+32 pages, 2 figures
High Energy Physics - Theory, Condensed Matter - Strongly Correlated Electrons, Quantum Physics, High Energy Physics - Theory (hep-th), Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics, Quantum Physics (quant-ph)
High Energy Physics - Theory, Condensed Matter - Strongly Correlated Electrons, Quantum Physics, High Energy Physics - Theory (hep-th), Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Chaotic Dynamics (nlin.CD), Nonlinear Sciences - Chaotic Dynamics, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 3 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
