Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ https://doi.org/10.1...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://doi.org/10.1103/physre...
Article . 2023 . Peer-reviewed
License: CC BY
Data sources: Crossref
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
https://dx.doi.org/10.48550/ar...
Article . 2022
License: CC BY
Data sources: Datacite
versions View all 5 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Dynamics of confined monopoles and similarities with confined quarks

Authors: Gia Dvali; Juan Sebastián Valbuena-Bermúdez; Michael Zantedeschi;

Dynamics of confined monopoles and similarities with confined quarks

Abstract

In this work, we study the annihilation of a pair of `t Hooft-Polyakov monopoles due to confinement by a string. We analyze the regime in which the scales of monopoles and strings are comparable. We compute the spectrum of the emitted gravitational waves and find it to agree with the previously calculated point-like case for wavelengths longer than the system width and before the collision. However, we observe that in a head-on collision, monopoles are never re-created. Correspondingly, not even once the string oscillates. Instead, the system decays into waves of Higgs and gauge fields. We explain this phenomenon by the loss of coherence in the annihilation process. Due to this, the entropy suppression makes the recreation of a monopole pair highly improbable. We argue that in a similar regime, analogous behaviour is expected for the heavy quarks connected by a QCD string. There too, instead of re-stretching a long string after the first collapse, the system hadronizes and decays in a high multiplicity of mesons and glueballs. We discuss the implications of our results.

11 pages, 7 figures, video with dynamics at https://www.youtube.com/watch?v=M4IX2JFVpGk

Country
Colombia
Keywords

High Energy Physics - Theory, Magnetic monopoles, Particles & Fields, Ciencias naturales y matemáticas, High Energy Physics - Lattice (hep-lat), Quarks, 500, FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Physical Systems, Direct numerical simulations, Ciencias naturales y matemáticas / Física, 530, General Relativity and Quantum Cosmology, Gravitational waves, High Energy Physics - Phenomenology, High Energy Physics - Lattice, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Confinement

  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    3
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
3
Top 10%
Average
Average
Green
hybrid