Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2021 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 3 versions
addClaim

Bayesian time delay interferometry

Authors: Jessica Page; Tyson B. Littenberg;

Bayesian time delay interferometry

Abstract

Laser frequency noise (LFN) is the dominant source of noise expected in the Laser Interferometer Space Antenna (LISA) mission, at $\sim$7 orders of magnitude greater than the typical signal expected from gravitational waves (GWs). Time-delay interferometry (TDI) suppresses LFN to an acceptable level by linearly combining measurements from individual spacecraft delayed by durations that correspond to their relative separations. Knowledge of the delay durations is crucial for TDI effectiveness. The work reported here extends upon previous studies using data-driven methods for inferring the delays during the post-processing of raw phasemeter data, also known as TDI ranging (TDIR). Our TDIR analysis uses Bayesian methods designed to ultimately be included in the LISA data model as part of a "Global Fit" analysis pipeline. Including TDIR as part of the Global Fit produces GW inferences which are marginalized over uncertainty in the spacecraft separations and allows for independent estimation of the spacecraft orbits. We demonstrate Markov Chain Monte Carlo (MCMC) inferences of the six time-independent delays required in the rigidly rotating approximation of the spacecraft configuration (TDI 1.5) using simulated data. The MCMC uses fractional delay interpolation (FDI) to digitally delay the raw phase meter data, and we study the sensitivity of the analysis to the filter length. Varying levels of complexity in the noise covariance matrix are also examined. Delay estimations are found to result in LFN suppression well below the level of secondary noises and constraints on the armlengths to $\mathcal{O}(30)\ {\rm cm}$ over the ${\sim}2.5\ {\rm Gm}$ baseline.

11 pages, 6 figures, accepted to Physical Review D. Minor revisions in text from initial submission

Keywords

FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), General Relativity and Quantum Cosmology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    14
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
14
Top 10%
Average
Top 10%
Green