
arXiv: 2007.05541
handle: 11568/1110577
We explore the possibility that theories with negative kinetic energy (ghosts) can be meta-stable up to cosmologically long times. In classical mechanics, ghosts undergo spontaneous lockdown rather than run-away if weakly-coupled and non-resonant. Physical examples of this phenomenon are shown. In quantum mechanics this leads to meta-stability similar to vacuum decay. In classical field theory, lockdown is broken by resonances and ghosts behave statistically, drifting towards infinite entropy as no thermal equilibrium exists. We analytically and numerically compute the run-away rate finding that it is cosmologically slow in 4-derivative gravity, where ghosts have gravitational interactions only. In quantum field theory the ghost run-away rate is naively infinite in perturbation theory, analogously to what found in early attempts to compute vacuum tunnelling; we do not know the true rate.
40 pages, 6 figures; published version
High Energy Physics - Theory, High Energy Physics - Phenomenology, Quantum Physics, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics, General Relativity and Quantum Cosmology
High Energy Physics - Theory, High Energy Physics - Phenomenology, Quantum Physics, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics, General Relativity and Quantum Cosmology
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 12 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
