Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ http://arxiv.org/pdf...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 2021 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2021
License: CC 0
Data sources: Datacite
versions View all 3 versions
addClaim

Tidal-heating and viscous dissipation correspondence in black holes and viscous compact objects

Authors: Sherf, Yotam;

Tidal-heating and viscous dissipation correspondence in black holes and viscous compact objects

Abstract

The effect of energy absorption during the binary evolution of Exotic-compact-objects (ECOs) is extensively studied. We review the underlying mechanism that provides the energy dissipation in material objects - tidal friction. We show that unlike typical astrophysical objects, where absorption due to viscosity is negligible, in ECOs, absorption could potentially mimic the analogous effect of black-holes (BHs) - tidal heating. We stand for their differences and similarities in the context of energy dissipation during the inspiral. Inspired by the membrane paradigm and recent studies, we demonstrate how viscosity is a defining feature that quantifies how close is the ECO absorption to that of a classical BH absorption. We show that for ECOs, viscosity can induce significant modifications to the GW waveform, which in some favorable scenarios of super-massive binaries of equal mass and spin, enables the measurement of the ECO absorption in the future precision gravitational-wave (GW) observations. Finally, we discuss the implications on the ECO reflection coefficient and the relation to the universal viscosity to volume entropy bound.

Replaced to agree with the published version. Typo in Eq.10 was corrected

Related Organizations
Keywords

High Energy Physics - Theory, High Energy Astrophysical Phenomena (astro-ph.HE), High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), High Energy Physics - Theory (hep-th), FOS: Physical sciences, General Relativity and Quantum Cosmology (gr-qc), Astrophysics - High Energy Astrophysical Phenomena, General Relativity and Quantum Cosmology

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    8
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
8
Top 10%
Average
Top 10%
Green