<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
handle: 1854/LU-3220452
[Background] A complete set is a minimum set of observables which allows one to determine the underlying reaction amplitudes unambiguously. Pseudoscalar-meson photoproduction from the nucleon is characterized by four such amplitudes and complete sets involve single- and double-polarization observables. [Purpose] Identify complete sets of observables, and study how measurements with finite error bars impact their potential to determine the reaction amplitudes unambiguously. [Method] The authors provide arguments to employ the transversity representation in order to determine the amplitudes in pseudoscalar-meson photoproduction. It is studied whether the amplitudes in the transversity basis for the $��p \to K^+��$ reaction can be estimated without ambiguity. To this end, data from the GRAAL collaboration and mock data from a realistic model are analyzed. [Results] It is illustrated that the moduli of normalized transversity amplitudes can be determined from precise single-polarization data. Starting from mock data with achievable experimental resolution, it is quite likely to obtain imaginary solutions for the relative phases of the amplitudes. Also the real solutions face a discrete phase ambiguity which makes it impossible to obtain a statistically significant solution for the relative phases at realistic experimental conditions. [Conclusions] Single polarization observables are effective in determining the moduli of the amplitudes in a transversity basis. Determining the relative phases of the amplitudes from double-polarization observables is far less evident. The availability of a complete set of observables does not allow one to unambiguously determine the reaction amplitudes with statistical significance.
15 pages, 6 figures, 8 tables
Nuclear Theory (nucl-th), Physics and Astronomy, N-ASTERISK EXPERIMENTS, Nuclear Theory, FOS: Physical sciences, HIGHLIGHTS, SPIN OBSERVABLES
Nuclear Theory (nucl-th), Physics and Astronomy, N-ASTERISK EXPERIMENTS, Nuclear Theory, FOS: Physical sciences, HIGHLIGHTS, SPIN OBSERVABLES
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |