
A microcanonical multifragmentation model (MMM) is used for investigating whether equilibration really occurs in the dynamical evolution of two heavy ion collisions simulated via a stochastic mean field approach (SMF). The standard deviation function between the dynamically obtained freeze-out fragment distributions corresponding to the reaction $^{129}$Xe+$^{119}$Sn at 32 MeV/u and the MMM ones corresponding to a wide range of mass, excitation energy, freeze-out volume and nuclear level density cut-off parameter shows a unique minimum. A distinct statistically equilibrated stage is identified in the dynamical evolution of the system.
5 pages, 3 figures
Nuclear Theory (nucl-th), Nuclear Theory, FOS: Physical sciences
Nuclear Theory (nucl-th), Nuclear Theory, FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 9 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
