
We study, within the statistical hadronization model, the influence of narrow strangeness carrying baryon resonances (pentaquarks) on the understanding of particle production in relativistic heavy ion collisions. There is a great variation of expected yields as function of heavy ion collision energy due to rapidly evolving chemical conditions at particle chemical freeze-out. At relatively low collision energies, these new states lead to improvement of statistical hadronization fits.
4 pages including two tables and 3 figures; published, updated references
[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph], High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
[PHYS.HPHE] Physics [physics]/High Energy Physics - Phenomenology [hep-ph], High Energy Physics - Phenomenology, High Energy Physics - Phenomenology (hep-ph), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
