
arXiv: 1309.3262
Functional renormalization group (FRG) has become a diverse and powerful tool to derive effective low-energy scattering vertices of interacting many-body systems. Starting from a non-interacting expansion point of the action, the flow of the RG parameter Lambda allows to trace the evolution of the effective one-particle and two-particle vertices towards low energies by taking into account the vertex corrections between all parquet channels in an unbiased fashion. In this work, we generalize the expansion point at which the diagrammatic resummation procedure is initiated from a free UV limit to a cluster product state. We formulate a cluster FRG scheme where the non-interacting building blocks (i.e., decoupled spin clusters) are treated exactly, and the inter-cluster couplings are addressed via RG. As a benchmark study, we apply our cluster FRG scheme to the spin-1/2 bilayer Heisenberg model (BHM) on a square lattice where the neighboring sites in the two layers form the individual 2-site clusters. Comparing with existing numerical evidence for the BHM, we obtain reasonable findings for the spin susceptibility, magnon dispersion, and magnon quasiparticle weight even in coupling regimes close to antiferromagnetic order. The concept of cluster FRG promises applications to a large class of interacting electron systems.
17 pages, 13 figures
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, 530
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, 530
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 25 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
