
<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>The widely accepted intuition that the important properties of solids are determined by a few key variables underpins many methods in physics. Though this reductionist paradigm is applicable in many physical problems, its utility can be limited because the intuition for identifying the key variables often does not exist or is difficult to develop. Machine learning algorithms (genetic programming, neural networks, Bayesian methods, etc.) attempt to eliminate the ap riorineed for such intuition but often do so with increased computational burden and human time. A recently developed technique in the field of signal processing, compressive sensing (CS), provides a simple, general, and efficient way of finding the key descriptive variables. CS is a powerful paradigm for model building; we show that its models are more physical and predict more accurately than current state-of-the-art approaches and can be constructed at a fraction of the computational cost and user effort.
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 180 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
