<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
A time-dependent density functional theory (TDDFT) for a quantum many-body system on a lattice is formulated rigorously. We prove the uniqueness of the density-to-potential mapping and demonstrate that a given density is $v$-representable if the initial many-body state and the density satisfy certain well defined conditions. In particular, we show that for a system evolving from its ground state any density with a continuous second time derivative is $v$-representable and therefore the lattice TDDFT is guaranteed to exist. The TDDFT existence and uniqueness theorem is valid for any connected lattice, independently of its size, geometry and/or spatial dimensionality. The general statements of the existence theorem are illustrated on a pedagogical exactly solvable example which displays all details and subtleties of the proof in a transparent form. In conclusion we briefly discuss remaining open problems and directions for a future research.
12 pages, 1 figure
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 36 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |