
Effects of electron correlations on a two dimensional quantum spin Hall (QSH) system are studied. We examine possible phases of a generalized Hubbard model on a bilayer honeycomb lattice with a spin-orbit coupling and short range electron-electron repulsions at half filling, based on the slave rotor mean-field theory. Besides the conventional QSH phase and a broken-symmetry insulating phase, we find a new phase, a fractionalized quantum spin Hall phase, where the QSH effect arises for fractionalized spinons which carry only spin but not charge. Experimental manifestations of the exotic phase and effects of fluctuations beyond the saddle point approximation are also discussed.
6 pages, 2 figures; v3) discussions on the stability of the edge modes added
Condensed Matter - Strongly Correlated Electrons, Condensed Matter - Mesoscale and Nanoscale Physics, Strongly Correlated Electrons (cond-mat.str-el), Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
Condensed Matter - Strongly Correlated Electrons, Condensed Matter - Mesoscale and Nanoscale Physics, Strongly Correlated Electrons (cond-mat.str-el), Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 51 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
