
Using the Hubbard chain at quarter filling as a model system, we study the ground state properties of highly doped antiferromagnets. In particular, the Hubbard chain at quarter filling is unstable against 2k_F- and 4k_F-periodic potentials, leading to a large variety of charge and spin ordered ground states. Employing the density matrix renormalization group method, we compare the energy gain of the ground state induced by different periodic potentials. For interacting systems the lowest energy is found for a 2k_F-periodic magnetic field, resulting in a band insulator with spin gap. For strong interaction, the 4k_F-periodic potential leads to a half-filled Heisenberg chain and thus to a Mott insulating state without spin gap. This ground state is more stable than the band insulating state caused by any non-magnetic 2k_F-periodic potential. Adding more electrons, a cluster-like ordering is preferred.
8 pages, 5 figures, accepted by Phys. Rev. B
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences
Condensed Matter - Strongly Correlated Electrons, Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 5 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
