
We investigate the ballistic electron transport in a two dimensional Quantum Wire under the action of an electric field ($E_y$). We demonstrate how the presence of a Spin Orbit coupling, due to the uniform electric confinement field gives a non-commutative effect as in the presence of a transverse magnetic field. We discuss how the non commutation implies an edge localization of the currents depending on the electron spins also giving a semi-classical spin dependent Hall current. We also discuss how it is possible obtain a quantized Spin Hall conductance in the ballistic transport regime by developing the Landauer formalism and show the coupling between the spin magnetic momentum and the orbital one due to the presence of a circulating current.
7 pages, 5 figures, accepted for publication in Phys. Rev. B, PACS: 72.25.-b, 72.10.-d, 72.15.Rn, 73.23.-b, 71.10.Pm
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Condensed Matter Physics
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences, Condensed Matter Physics
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 22 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
