
handle: 20.500.11770/149661 , 20.500.11769/289
We propose a scheme to implement a quantum information transfer protocol with a superconducting circuit and Josephson charge qubits. The information exchange is mediated by an L-C resonator used as a data bus. The main decoherence sources are analyzed in detail.
4 pages, 2 figures
quantum information; entanglement; superconductivity, Superconductivity (cond-mat.supr-con), Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Superconductivity, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
quantum information; entanglement; superconductivity, Superconductivity (cond-mat.supr-con), Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Superconductivity, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
| citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 103 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
