
We study the properties of the "spin quantum Hall fluid" - a novel spin phase with quantized spin Hall conductance that is potentially realizable in superconducting systems with unconventional pairing symmetry. A simple realization is provided by a $d_{x^2-y^2} + id_{xy}$ superconductor which we argue has a dimensionless spin Hall conductance equal to two. A theory of the edge states of the $d_{x^2-y^2}+id_{xy}$ superconductor is developed. The properties of the transition to a phase with vanishing spin Hall conductance induced by disorder are considered. We construct a description of this transition in terms of a supersymmetric spin chain, and use it to numerically determine universal properties of the transition. We discuss various possible experimental probes of this quantum Hall physics.
12 pages
Superconductivity (cond-mat.supr-con), Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Superconductivity, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
Superconductivity (cond-mat.supr-con), Condensed Matter - Mesoscale and Nanoscale Physics, Condensed Matter - Superconductivity, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 278 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
