
pmid: 10008059
arXiv: cond-mat/9310020
We provide numerical evidence that the ground state of a short range interaction model at $��=1/2$ is incompressible and spin-singlet for a wide range of repulsive interactions. Furthermore it is accurately described by a trial wave function studied earlier. For the Coulomb interaction we find that this wave function provides a good description of the lowest lying spin-singlet state, and propose that fractional quantum Hall effect would occur at $��=1/2$ if this state became the global ground state.
Latex 13 pages, 3 figures upon request
Condensed Matter (cond-mat), FOS: Physical sciences, Condensed Matter
Condensed Matter (cond-mat), FOS: Physical sciences, Condensed Matter
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 14 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
