Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 1987 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
versions View all 2 versions
addClaim

Bonding and ionicity in semiconductors

Authors: , Christensen; , Satpathy; , Pawlowska;

Bonding and ionicity in semiconductors

Abstract

Theoretical investigations of the bonding properties of 34 elemental and compound semiconductors are reported. From self-consistent band-structure calculations (within the local-density approximation) valence charge densities are calculated. The densities are obtained by transforming muffin-tin orbitals to a localized basis. Using another representation, an orthogonal basis, we construct ${\mathrm{sp}}^{3}$ hybrids and project out the bond and antibond characters, i.e., we derive first-principles values for ${\mathrm{sp}}^{3}$ bond orders. These, together with the first-principles tight-binding parameters, are used to study chemical trends. Relations to Phillips ionicity (${f}_{i}$) scale are established and it is demonstrated, for example, that the critical ionicity value ${f}_{i}$=0.786 found empirically separating the fourfold- from the sixfold-coordinated crystal structures also follows from total-energy calculations.

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    270
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 10%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
270
Top 10%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!