Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao https://doi.org/10.1...arrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
https://doi.org/10.1103/physre...
Article . 1986 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
versions View all 2 versions
addClaim

Titanium Knight shift in titanium hydride

Authors: , Goren; , Korn; , Riesemeier; , Rössler; , Lüders;

Titanium Knight shift in titanium hydride

Abstract

The titanium Knight shift was measured at room temperature as a function of hydrogen concentration in TiH/sub x/ and as a function of temperature for TiH/sub 2/. In contrast to hexagonal Ti metal, the close-lying /sup 47/Ti and /sup 49/Ti resonances were resolved in TiH/sub 2/ even in the tetragonal phase. The shift in TiH/sub 2/ was found to be temperature dependent, varying from (0.252 +- 0.001)% at room temperature to (0.312 +- 0.001)% at 180 K. It was consistent with previously measured hydrogen-spin-lattice-relaxation times and with accepted band-structure models. The accuracy of the hydrogen-concentration dependence of the Knight shift was much lower due to vacancy-induced quadrupolar interactions and the resultant inability to resolve the /sup 47/Ti and /sup 49/Ti resonances. The Knight shift was only slightly concentration dependent over the entire range, having a value of about 0.25%, but jumping suddenly to 0.55% at x = 1.5. This was accompanied by a widely separated doubly peaked resonance line, We speculate on the cause of this jump and the resultant line shape.

Related Organizations
  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    13
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 10%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
13
Average
Top 10%
Average
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!