
arXiv: 2204.06268
Identifying novel topological properties of topological quantum states of matter, such as exemplified by the quantized Hall conductance, is a valuable step towards realizing materials with attractive topological attributes that guarantee their imperviousness to realistic imperfections, disorder and environmental disturbances. Is the gravitational coupling coefficient of topological quantum states of matter a promising candidate? Substantially building on well established results for quantum Hall states, using disclinations as tools for controlled creation of pristine spatial curvature free of undesirable artifacts such as would interfere with the electronic motion of interest, herein we report that a large class of lattice topological states of matter exhibit gravitational response, i.e., charge response to intrinsic spatial curvature. This phenomenon is characterized by a topologically quantized coupling constant. Remarkably, the charge-gravity relationship remains linear in the curvature, up to the maximum curvature achievable on the lattice, demonstrating absence of higher order nonlinear response. Our findings facilitate articulating the physical principles underlying the topological quantization of the gravitational coupling constant, in analogy with the insights offered by the Chern number description of the quantized Hall conductance.
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), FOS: Physical sciences
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 4 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
