
arXiv: 2003.12221
Spin transport at metallic interfaces is an essential ingredient of various spintronic device concepts, such as giant magnetoresistance, spin-transfer torque, and spin pumping. Spin-orbit coupling plays an important role in many such devices. In particular, spin current is partially absorbed at the interface due to spin-orbit coupling. We develop a general magnetoelectronic circuit theory and generalize the concept of the spin mixing conductance, accounting for various mechanisms responsible for spin-flip scattering. For the special case when exchange interactions dominate, we give a simple expression for the spin mixing conductance in terms of the contributions responsible for spin relaxation (i.e., spin memory loss), spin torque, and spin precession. The spin-memory loss parameter $��$ is related to spin-flip transmission and reflection probabilities. There is no straightforward relation between spin torque and spin memory loss. We calculate the spin-flip scattering rates for N|N, F|N, F|F interfaces using the Landauer-B��ttiker method within the linear muffin-tin orbital method and determine the values of $��$ using circuit theory.
12 pages, 4 figures
Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Condensed Matter Physics, 530
Condensed Matter - Materials Science, Condensed Matter - Mesoscale and Nanoscale Physics, Mesoscale and Nanoscale Physics (cond-mat.mes-hall), Materials Science (cond-mat.mtrl-sci), FOS: Physical sciences, Condensed Matter Physics, 530
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 10 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
