Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/ arXiv.org e-Print Ar...arrow_drop_down
image/svg+xml art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos Open Access logo, converted into svg, designed by PLoS. This version with transparent background. http://commons.wikimedia.org/wiki/File:Open_Access_logo_PLoS_white.svg art designer at PLoS, modified by Wikipedia users Nina, Beao, JakobVoss, and AnonMoos http://www.plos.org/
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review Applied
Article . 2023 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
https://dx.doi.org/10.48550/ar...
Article . 2023
License: arXiv Non-Exclusive Distribution
Data sources: Datacite
versions View all 4 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Qubit readout enabled by qubit cloaking

Authors: Manuel H. Muñoz-Arias; Cristóbal Lledó; Alexandre Blais;

Qubit readout enabled by qubit cloaking

Abstract

Time-dependent drives play a crucial role in quantum computing efforts with circuit quantum electrodynamics. They enable single-qubit control, entangling logical operations, as well as qubit readout. However, their presence can lead to deleterious effects such as large ac-Stark shifts and unwanted qubit transitions ultimately reflected into reduced control or readout fidelities. Qubit cloaking was introduced in Lledó, Dassonneville, et al. [C. Lledó, R. Dassonneville, A. Moulinas et al., Nat. Commun. \textbf{14}, 6313 (2023)] to temporarily decouple the qubit from the coherent photon population of a driven cavity, allowing for the application of arbitrary displacements to the cavity field while avoiding the deleterious effects on the qubit. For qubit readout, cloaking permits to prearm the cavity with an, in principle, arbitrarily large number of photons, in anticipation to the qubit-state-dependent evolution of the cavity field, allowing for improved readout strategies. Here we take a closer look at two of them. First, arm-and-release readout, introduced together with qubit cloaking, where after arming the cavity the cloaking mechanism is released and the cavity field evolves under the application of a constant drive amplitude. Second, an arm-and-longitudinal readout scheme, where the cavity drive amplitude is slowly modulated after the release. We show that the two schemes complement each other, offering an improvement over the standard dispersive readout for any values of the dispersive interaction and cavity decay rate, as well as any target measurement integration time. Our results provide a recommendation for improving qubit readout without changes to the standard circuit QED architecture.

Revised version with typos corrected, comments welcome

Keywords

Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)

  • BIP!
    Impact byBIP!
    selected citations
    These citations are derived from selected sources.
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    1
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Average
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Average
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Average
Powered by OpenAIRE graph
Found an issue? Give us feedback
selected citations
These citations are derived from selected sources.
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
1
Average
Average
Average
Green
Related to Research communities