
Quantum entanglement has become an essential resource in quantum information processing. Existing works employ entangled quantum states to perform various tasks, while little attention is paid to the control of the resource. In this work, we propose a simple protocol to upgrade an entanglement source with access control through phase randomization at the optical pump. The enhanced source can effectively control all users in utilizing the entanglement resource to implement quantum cryptography. In addition, we show this control can act as a practical countermeasure against memory attack on device-independent quantum key distribution at a negligible cost. To demonstrate the feasibility of our protocol, we implement an experimental setup using just off-the-shelf components and characterize its performance accordingly.
9 pages, 7 figures, comments are welcome! Looking forward to collaborations!
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph), Physics - Optics, Optics (physics.optics)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph), Physics - Optics, Optics (physics.optics)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 2 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Average |
