
Over the years, an enormous effort has been made to establish nitrogen vacancy (NV) centers in diamond as easily accessible and precise magnetic field sensors. However, most of their sensing protocols rely on the application of bias magnetic fields, preventing their usage in zero- or low-field experiments. We overcome this limitation by exploiting the full spin $S=1$ nature of the NV center, allowing us to detect nuclear spin signals at zero- and low-field with a linearly polarized microwave field. As conventional dynamical decoupling protocols fail in this regime, we develop new robust pulse sequences and optimized pulse pairs, which allow us to sense temperature and weak AC magnetic fields and achieve an efficient decoupling from environmental noise. Our work allows for much broader and simpler applications of NV centers as magnetic field sensors in the zero- and low-field regime and can be further extended to three-level systems in ions and atoms.
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
Quantum Physics, FOS: Physical sciences, Quantum Physics (quant-ph)
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 18 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 10% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Average | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |
