
arXiv: 1105.2548
We propose a global measure for quantum correlations in multipartite systems, which is obtained by suitably recasting the quantum discord in terms of relative entropy and local von Neumann measurements. The measure is symmetric with respect to subsystem exchange and is shown to be non-negative for an arbitrary state. As an illustration, we consider tripartite correlations in the Werner-GHZ state and multipartite correlations at quantum criticality. In particular, in contrast with the pairwise quantum discord, we show that the global quantum discord is able to characterize the infinite-order quantum phase transition in the Ashkin-Teller spin chain.
v3: 7 pages, 6 figures. Published version
Quantum Physics, Condensed Matter - Strongly Correlated Electrons, Statistical Mechanics (cond-mat.stat-mech), Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
Quantum Physics, Condensed Matter - Strongly Correlated Electrons, Statistical Mechanics (cond-mat.stat-mech), Strongly Correlated Electrons (cond-mat.str-el), FOS: Physical sciences, Quantum Physics (quant-ph), Condensed Matter - Statistical Mechanics
| selected citations These citations are derived from selected sources. This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 271 | |
| popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
| influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 1% | |
| impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 1% |
