<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
We examine single-frequency optical schemes for species-selective trapping of ultracold alkali-metal atoms. Independently addressing the elements of a binary mixture enables the creation of an optical lattice for one atomic species with little or no effect on the other. We analyze a "tune-in" scheme, using near-resonant detuning to create a stronger potential for one specific element. A "tune-out" scheme is also developed, in which the trapping wavelength is chosen to lie between two strong transitions of an alkali-metal atom such that the induced dipole moment is zero for that species but is nonzero for any other. We compare these schemes by examining the trap depths and heating rates associated with both. We find that the tune-in scheme is preferable for Li-Na, Li-K, and K-Na mixtures, while the tune-out scheme is preferable for Li-Cs, K-Rb, Rb-Cs, K-Cs and 39K-40K mixtures. Several applications of species-selective optical lattices are explored, including the creation of a lattice for a single species in the presence of a phononlike background, the tuning of relative effective mass, and the isothermal increase of phase space density.
10 pages, 4 figures; v3: published version
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
Statistical Mechanics (cond-mat.stat-mech), FOS: Physical sciences, Condensed Matter - Statistical Mechanics
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 162 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Top 1% | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |