Powered by OpenAIRE graph
Found an issue? Give us feedback
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Physical Review Aarrow_drop_down
image/svg+xml Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao Closed Access logo, derived from PLoS Open Access logo. This version with transparent background. http://commons.wikimedia.org/wiki/File:Closed_Access_logo_transparent.svg Jakob Voss, based on art designer at PLoS, modified by Wikipedia users Nina and Beao
Physical Review A
Article . 1990 . Peer-reviewed
License: APS Licenses for Journal Article Re-use
Data sources: Crossref
versions View all 2 versions
addClaim

This Research product is the result of merged Research products in OpenAIRE.

You have already added 0 works in your ORCID record related to the merged Research product.

Superintegrability in classical mechanics

Authors: Nick Evans; Nick Evans;

Superintegrability in classical mechanics

Abstract

Superintegrable Hamiltonians in three degrees of freedom possess more than three functionally independent globally defined and single-valued integrals of motion. Some familiar examples, such as the Kepler problem and the harmonic oscillator, have been known since the time of Laplace. Here, a classification theorem is given for superintegrable potentials with invariants that are quadratic polynomials in the canonical momenta. Such systems must possess separable solutions to the Hamilton-Jacobi equation in more than one coordinate system. There are 11 coordinate systems for which the Hamilton-Jacobi equation separates in ${\mathit{openR}}^{3}$. One coordinate system may be arbitrarily rotated or translated with respect to the other, yielding 66 distinct cases. In each case, the differential equations for separability in the two coordinates are integrated to give a complete list of all superintegrable potentials with four or five quadratic integrals. The tables---which may be consulted independently of the main body of the paper---list the distinct superintegrable potentials, the separating coordinates, and the isolating integrals of the motion. If there exist five isolating integrals, then all finite classical trajectories are closed; if only four, then the trajectories are restricted to two-dimensional surface. An extraordinary consequence of the work is the discovery of perturbations to both the Kepler problem and the harmonic oscillator that do not destroy the fragile degeneracy. The perturbed systems still have five isolating integrals of the motion.

Related Organizations
  • BIP!
    Impact byBIP!
    citations
    This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    294
    popularity
    This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
    Top 1%
    influence
    This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
    Top 1%
    impulse
    This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
    Top 10%
Powered by OpenAIRE graph
Found an issue? Give us feedback
citations
This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Citations provided by BIP!
popularity
This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network.
BIP!Popularity provided by BIP!
influence
This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically).
BIP!Influence provided by BIP!
impulse
This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network.
BIP!Impulse provided by BIP!
294
Top 1%
Top 1%
Top 10%
Upload OA version
Are you the author of this publication? Upload your Open Access version to Zenodo!
It’s fast and easy, just two clicks!