<script type="text/javascript">
<!--
document.write('<div id="oa_widget"></div>');
document.write('<script type="text/javascript" src="https://www.openaire.eu/index.php?option=com_openaire&view=widget&format=raw&projectId=undefined&type=result"></script>');
-->
</script>
The nonlinear Navier-Stokes-Langevin equations are used to describe fluctuations in a compressible fluid with uniform shear flow. The hydrodynamic modes for small deviations from the macroscopic nonequilibrium state are calculated, including linear mode coupling of the fluctuating variables with the macroscopic velocity field. The associated correlation functions are determined with the full nonlinear dependence on shear rate required for long times and/or large shear rate. The stationary and joint probability densities are also constructed from the associated Fokker-Planck equation. As an application of these results, the lowest-order mode-coupling contributions to the renormalized shear viscosity are evaluated.
Physique
Physique
citations This is an alternative to the "Influence" indicator, which also reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | 38 | |
popularity This indicator reflects the "current" impact/attention (the "hype") of an article in the research community at large, based on the underlying citation network. | Average | |
influence This indicator reflects the overall/total impact of an article in the research community at large, based on the underlying citation network (diachronically). | Top 10% | |
impulse This indicator reflects the initial momentum of an article directly after its publication, based on the underlying citation network. | Top 10% |